CAPÍTULO O: EN INTELIGENCIA ARTIFICIAL APLICADA A ENTORNOS DIGITALES DE GESTIÓN1
ARTÍCULO 1501. Aprobar la Diplomatura en “Inteligencia Artificial Aplicada a Entornos Digitales de Gestión”, elevada por la Facultad de Ciencias Económicas, presentadasegún la Resolución (CD) Nº 988/23, que forma parte del presente Capítulo.
PLAN DE ESTUDIOS
a. Denominación
DIPLOMATURA EN INTELIGENCIA ARTIFICIAL APLICADA A ENTORNOS DIGITALES DE GESTIÓN.
b. Objetivos
Formar a los alumnos de la diplomatura en la aplicación de modelos de inteligencia artificial (IA) en entornos digitales de gestión en las organizaciones, con capacidad de entender y poder aplicar estos modelos en una variedad de contextos organizacionales, incluyendo la automatización de procesos, análisis de datos y toma de decisiones.
Brindar una comprensión sólida de las bases teóricas y prácticas de la inteligencia artificial, a partir de la adquisición de un entendimiento fundamental de los algoritmos y modelos subyacentes en la IA, incluyendo aprendizaje automático, procesamiento del lenguaje natural y redes neuronales.
Capacitar en la evaluación crítica de las ventajas y desventajas de la implementación de la IA en diferentes contextos, incluyendo la comprensión de los beneficios potenciales, así como también los riesgos éticos, legales y sociales que pueden surgir.
Quienes finalicen esta diplomatura, podrán identificar los siguientes aspectos:
Tópicos fundamentales de Inteligencia Artificial (IA)
- Conocer el desarrollo del concepto de IA a lo largo del tiempo.
- Diferenciar entre sistemas de IA fuerte y débil, y comprendiendo sus aplicaciones.
- Conocer el funcionamiento de los algoritmos y cómo se aplican a la resolución de problemas.
- Reconocer los dilemas éticos en la aplicación de la IA y cómo abordarlos.
Tópicos de Aprendizaje Automático y Aprendizaje Profundo
- Entender la diferencia entre los dos tipos principales de aprendizaje automático, supervisado y no supervisado.
- Obtener una visión general de cómo funcionan y dónde se utilizan las redes neuronales.
- Conocer cómo se utiliza el aprendizaje profundo en los modelos de IA.
- Conocer el funcionamiento de las herramientas comúnmente utilizadas.
Procesamiento de Lenguaje Natural (NPL) y Modelos de tomas de decisiones aplicados a la IA
- Comprender cómo los sistemas de IA interpretan y generan lenguaje humano.
- Identificar cómo se utiliza el NLP en la IA, por ejemplo, en modelos conversacionales o traducción automática.
- Entender el funcionamiento de técnicas tales como los árboles de decisión y el aprendizaje por refuerzo.
- Aplicar estos modelos en escenarios reales para apoyar la toma de decisiones en las organizaciones.
Transformación de las organizaciones e integración del capital humano a partir de la implementación de modelos de IA.
- Identificar cómo la IA puede mejorar la eficiencia y productividad en diversas áreas.
- Comprender cómo gestionar la transformación en las organizaciones al implementar la IA.
- Reconocer cómo integrar de manera efectiva el capital humano y la IA.
- Abordar posibles problemas en la integración de la IA y cómo superarlos.
c. Justificación
En la última década, la inteligencia artificial (IA) ha experimentado avances significativos y ha comenzado a tener un impacto transformador en diversas industrias y disciplinas. Las organizaciones de todos los sectores están explorando cómo pueden utilizar la IA para mejorar la eficiencia y aumentar la productividad.
A pesar de este creciente interés y necesidad de integrar la IA en las operaciones organizacionales, hay una escasez de capital humano que posea tanto un entendimiento sólido de los conceptos y técnicas de la IA como una comprensión de cómo aplicar estos conocimientos en contextos organizacionales reales.
Esta brecha representa un desafío para las organizaciones que buscan aprovechar los beneficios de la IA, pero también una oportunidad para los profesionales que pueden adquirir estas habilidades.
La Diplomatura en Inteligencia Artificial aplicada a Entornos Digitales de Gestión está diseñada para responder a estas necesidades. Proporcionará a los estudiantes una formación integral en los fundamentos de la IA, junto con la oportunidad de aplicar este conocimiento a problemas prácticos en un contexto organizacional.
A través de esta diplomatura, los estudiantes estarán equipados con las habilidades que necesitan para liderar y contribuir en la transformación digital y la adaptación a la era de la IA. Es importante destacar que esta diplomatura también abordará cuestiones críticas de ética y responsabilidad social en IA, preparando a los estudiantes para aplicar la IA de manera que sea beneficiosa para todas las partes interesadas.
d. Pertinencia respecto a la unidad académica que la propone
La Facultad de Ciencias Económicas de la UBA, tiene cinco carreras de grado, entre las cuales se encuentra la Licenciatura en Sistemas de Información de las Organizaciones y la Licenciatura en Administración, carrera en la cual se desempeña parte del equipo de esta Diplomatura, en la Cátedra de Actuación Profesional. También, como complemento superior directo a dichas carrera de grado, la Facultad dispone en Posgrado, de la Especialización y Maestría en Gestión Estratégica de Sistemas y Tecnologías de la Información, conjuntamente con la Maestría y Especialización en Métodos Cuantitativos para la Gestión y Análisis de Datos en Organizaciones.
Todas estas carreras, tienen como eje central la “Gestión” de la tecnología en ámbitos organizacionales, contemplando todos los componentes que este ecosistema contiene.
Considerando lo explicitado, esta Diplomatura se debe desarrollar en la Facultad, dado que también su eje principal es la Gestión (en este caso de un punto específico que es la implementación y utilización de modelos de inteligencia artificial aplicados), pero con los objetivos de una Diplomatura, que se dirige a un público amplio fuera del concepto de carreras y con un perfil práctico y operativo en esta temática, que lo potencie para desarrollarse en el mercado actual dentro organizaciones públicas y privadas, con esta función en particular.
e. Estructura (módulos, unidades, carga horaria por módulos o unidad)
La estructura de la Diplomatura se compone de diez Módulos
MODULO | HORAS | CLASES |
1: NIVELATORIO | 16 | 4 |
2: APRENDIZAJE AUTOMATICO (MACHINE LEARNING) | 16 | 4 |
3: APRENDIZAJE PROFUNDO (DEEP LEARNING) | 16 | 4 |
4: PROCESAMIENTO DE LENGUAJE NATURAL (NLP) | 12 | 3 |
5: MODELOS DE TOMA DE DECISIONES BASADOS EN IA | 16 | 4 |
6: IA EN LA TRANSFORMACIÓN DE LAS ORGANIZACIONES | 8 | 2 |
7: INTEGRACION DE LA IA CON EL CAPITAL HUMANO | 8 | 2 |
8: ETICA, PRIVACIDAD y TRANSPARENCIA EN LA IA | 8 | 2 |
TOTALES | 100 | 25 |
f. Contenidos de cada unidad o módulo
Duración total: 25 semanas (100 hs. en sesiones semanales de 4 hs.)
1- MÓDULO NIVELATORIO
Duración: 4 semanas
Introducción a los modelos de inteligencia artificial. Fundamentos de programación en Python. Librerías especificas en Python para IA. APIs de IA en Python. Práctica integradora.
2- APRENDIZAJE AUTOMATICO (MACHINE LEARNING)
Duración: 4 semanas
Definición de Machine Learning. Tipos de aprendizaje: Supervisado, No Supervisado y Por Refuerzo. Algoritmos y técnicas fundamentales en Machine Learning. Aplicaciones del Machine Learning en la gestión organizacional. Práctica Integradora.
3- APRENDIZAJE PROFUNDO (DEEP LEARNING)
Duración: 4 semanas
Introducción al Deep Learning. Arquitecturas de Redes Neuronales. Redes Neuronales Convolucionales (CNN). Redes Neuronales Recurrentes (RNN). Aplicaciones del Deep Learning en la gestión organizacional. Práctica Integradora.
4- PROCESAMIENTO DE LENGUAJE NATURAL (NLP)
Duración: 3 semanas
Introducción al procesamiento del lenguaje natural. Técnicas y herramientas en NLP. Análisis de sentimientos y extracción de información. Aplicaciones en la gestión organizacional. Práctica Integradora.
5- MODELOS DE TOMA DE DECISIONES BASADOS EN IA
Duración: 4 semanas
Introducción a la Toma de Decisiones Basada en IA. Árboles de Decisión y Random Forest. Sistemas Basados en Reglas. Aprendizaje por Refuerzo. Algoritmos Genéticos y Optimización. Procesos de Markov de Decisión (MDP). Práctica Integradora.
6- IA EN LA TRANSFORMACIÓN DE LAS ORGANIZACIONES
Duración: 2 semanas
El Papel de la IA en la Transformación Digital. Implementación de la IA en las Organizaciones. IA y Gestión de Datos en las Organizaciones. IA en la Cadena de Suministro y Logística. Práctica Integradora.
7- INTEGRACION DE LA IA CON EL CAPITAL HUMANO
Duración: 2 semanas
La Coexistencia de la IA y el Capital Humano. Formación y Desarrollo de Habilidades en la Era de la IA. IA y Cambio Organizacional. Desafíos Culturales y Psicológicos de la Integración de la IA. Práctica Integradora.
8- ETICA, PRIVACIDAD y TRANSPARENCIA EN LA IA
Duración: 2 semanas
Dilemas éticos en el uso de IA. Privacidad y protección de datos. Transparencia y explicabilidad de los modelos de IA. Sesgo algorítmico y sus implicaciones en la toma de decisiones. Práctica Integradora.
g. Carga horaria total
La carga horaria es de 100 horas que se dictarán una vez por semana con una dedicación de 4 horas. La duración temporal es de 6 meses.
Según el momento del año que se comience, se podrá optar por ofrecerla más intensiva con 2 veces por semana y 3 meses temporal de duración.
h. Requisitos de ingreso
Profesionales o Técnicos de cualquier especialidad y personas con estudios secundarios y experiencia en el uso de herramientas informáticas.
i. Modalidad de cursado
Se realizará un encuentro virtual sincrónico semanal de 3 horas, más la utilización del campus virtual académico, para actividades asincrónicas de 1 hora por semana. En total son 4 horas semanales.
Durante la cursada habrá algunos encuentros presenciales en la Facultad con expertos en el tema, de diversas empresas y su asistencia es optativa.
j. Cronograma de dictado
Las clases sincrónicas serán los días hábiles a determinar, a partir de 19 hs., utilizando la herramienta de videoconferencias Teams de la Facultad.
k. Curriculum vitae del Coordinador, quien deberá ser docente de la Universidad.
Diego Alejandro Parrás
Licenciado en Administración y Contador Público de la Universidad de Buenos Aires (UBA), Facultad de Ciencias Económicas (FCE).
Doctorando en el Doctorado en Ciencias Económicas de la Universidad de Buenos Aires, Subárea Finanzas, Facultad de Ciencias Económicas Posee más de 10 años de experiencia profesional en el ámbito de las tecnologías de información aplicadas a las organizaciones públicas y privadas, como asesor externo.
Actualmente se desempeña como Secretario de Gestión de la Información y Transformación Digital del Ciclo Básico Común de la Universidad de Buenos Aires, teniendo a su cargo la planificación y el diseño de los sistemas informáticos de gestión y académicos aplicados a partir del 2020.
En la docencia, desde 2013 se desempeña como Profesor Adjunto Int. del Departamento de Matemáticas, en materias como Cálculo Financiero, Estadística y Estadística para Administradores. Fue tutor de trabajos finales de la carrera de Licenciatura en Administración y Licenciatura en Economía en la FCE. Director de varios proyectos SPU y UBANEX.
l. Nómina de colaboradores/docentes
Daniel Fortuna
Jonatan Barros
Sebastián Rosales
Daiana Levit
Pablo Calello
m. Modalidad de evaluación
Cada módulo tendrá una evaluación final que propondrá el responsable del módulo tanto en los aspectos teóricos vistos, como así también en el cumplimiento de los trabajos prácticos.
n. Requisitos de aprobación
Al finalizar la Diplomatura, para aquellos alumnos que tengan todos los módulos aprobados, habrá un examen final integrador.
Se dará aprobada la Diplomatura, aquellos alumnos que tengan todos los módulos aprobados, el examen integrador aprobado y hayan cumplido con una asistencia mínima del 75%.
Entrevistas con empresas del mercado: para los alumnos que aprueben la diplomatura, la Facultad generará eventos de presentación con empresas que estén reclutando estos perfiles.
o. Modelo de certificado a otorgar
El mismo será en formato digital con logo de la Universidad y Facultad de Ciencias Económicas. Emitido por la SECRETARÍA DE EXTENSIÓN UNIVERSITARIA, BIENESTAR ESTUDIANTIL Y DESARROLLO SUSTENTABLE, de la Facultad.
Firmado por el Secretario y el responsable de Diplomaturas.
Expondrá que el alumno ha aprobado la diplomatura de referencia.
Nota: «El presente certificado no es habilitante para el ejercicio profesional.»
p. Arancel estipulado
El arancel total de la diplomatura es de 2.5 veces el sueldo bruto básico sin antigüedad y dedicación simple de un profesor adjunto.
El arancel para el alumno será de una matrícula inicial del 20% más 4 pagos de del 20%, cada uno por mes adelantado.
Se podrá aplicar becas y descuentos por grupos cerrados
[1] RESCS-2023-1162-UBA-REC